Skip to main content
Log in

Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Alumina nanofluids are one of the most useful nanofluids. In order to evaluate the colloidal behavior of nanoparticles in alumina/water nanofluid, the influence of effective factors such as pH, ionic strength and surfactants, was studied. Zeta potential, particle size and turbidity change of each nanofluid was investigated. According to the results for 0.05, 0.1 and 0.2 mass% nanofluid, point of zero charge was obtained at pH values of 9.5, 10.2 and 10.5, respectively. The highest nanofluid stability occurred at pH 4 and its lowest was at pH 10. The anionic surfactant had a greater effect on the stability in compared with cationic and nonionic surfactants. By increasing in ionic strength, zeta potential and as result nanofluid stability decreased and average particle size reduced. Sulfate salts had a more effect on reducing the nanofluid stability than chloride and carbonate salts. Experimental results of nanofluids stability, theoretically confirmed by plotting and analysis of DLVO theory curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

mass%:

Mass percentage

E :

Energy (J)

K :

Boltzmann constant (1.38 × 10−23 J K−1)

T :

Temperature (K)

a :

Particle radius (m)

e :

Electron charge (1.6 × 10−19 C)

z :

Charge number

N A :

Avogadro’s number (6.023 × 1023)

I :

Ionic strength

A :

Hamaker constant (J)

d :

Separation distance (m)

C :

Molar concentration

ɛ :

Dielectric constant of water (80.1)

ɛ 0 :

Permittivity of vacuum (8.85 × 10−12 F m−1)

Ψ :

Surface potential of the particles (V)

К :

Reciprocal of Debye length

edl:

Electrical double-layer repulsion

vdw:

Van der Waals attraction

t:

Total

i:

Ion

References

  1. Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1:1–17.

    Google Scholar 

  2. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: ASME international mechanical engineering congress and exposition, vol 66, number March; 1995. p. 99–105.

  3. Afrand M, Abedini E, Teimouri H. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water–ethylene glycol mixture: experimental evaluation and correlation development. Phys E Low Dimens Syst Nanostruct. 2017;87:273–80.

    Article  CAS  Google Scholar 

  4. Vafaei M, Afrand M, Sina N, Kalbasi R, Sourani F. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nano fluids based on experimental data by selecting optimal artificial neural networks. Physica E. 2017;85:90–6.

    Article  CAS  Google Scholar 

  5. Afrand M, Hemmat Esfe M, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Phys E Low Dimens Syst Nanostruct. 2017;87:242–7.

    Article  CAS  Google Scholar 

  6. Hemmat M, Firouzi M, Afrand M. Experimental and theoretical investigation of thermal conductivity of ethylene glycol containing functionalized single walled carbon nanotubes. Phys E Low Dimens Syst Nanostruct. 2018;95(June 2017):71–7.

    Article  CAS  Google Scholar 

  7. Izadi F, Ranjbarzadeh R, Kalbasi R, Afrand M. A new experimental correlation for non-Newtonian behavior of COOH-DWCNTs/antifreeze nanofluid. Phys E Low Dimens Syst Nanostruct. 2018;98:83–9.

    Article  CAS  Google Scholar 

  8. Ahmadi Nadooshan A, Hemmat Esfe M, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E Low Dimens Syst Nanostruct. 2017;92:47–54.

    Article  CAS  Google Scholar 

  9. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15(3):1646–68.

    Article  CAS  Google Scholar 

  10. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57(2):582–94.

    Article  CAS  Google Scholar 

  11. Shahsavani E, Afrand M, Kalbasi R. Using experimental data to estimate the heat transfer and pressure drop of non-Newtonian nanofluid flow through a circular tube: applicable for use in heat exchangers. Appl Therm Eng. 2018;129:1573–81.

    Article  CAS  Google Scholar 

  12. Shahsavani E, Afrand M, Kalbasi R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes: a novel correlation for the non-Newtonian nanofluid. J Therm Anal Calorim. 2018;131(2):1177–85.

    Article  CAS  Google Scholar 

  13. Abedini E, Zarei T, Rajabnia H, Kalbasi R, Afrand M. Numerical investigation of vapor volume fraction in subcooled flow boiling of a nanofluid. J Mol Liq. 2017;238:281–9.

    Article  CAS  Google Scholar 

  14. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  15. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  16. Ahmadi-Nadooshan A, Hemmat-Esfe M, Afrand M. Prediction of rheological behavior of SiO2-MWCNTs/10W40 hybrid nanolubricant by designing neural network. J Therm Anal Calorim. 2018;131(3):2741–8.

    Article  CAS  Google Scholar 

  17. Hemmat Esfe M, Nadooshan AA, Arshi A, Alirezaie A. Convective heat transfer and pressure drop of aqua based TiO2 nanofluids at different diameters of nanoparticles: data analysis and modeling with artificial neural network. Phys E Low Dimens Syst Nanostruct. 2018;97:155–61.

    Article  CAS  Google Scholar 

  18. Ahmadi Nadooshan A, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: newtonian and non-Newtonian behavior. J Mol Liq. 2018;253:169–77.

    Article  CAS  Google Scholar 

  19. Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006;32(8):967–76.

    Article  CAS  PubMed  Google Scholar 

  20. Sridhara V, Satapathy LN. Al2O3-based nanofluids: a review. Nanoscale Res Lett. 2011;6(1):456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei. 1993;7(4):227–33.

    Article  CAS  Google Scholar 

  22. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle—fluid mixture. J Thermophys Heat Transf. 1999;13(4):474–80.

    Article  CAS  Google Scholar 

  23. Das PK, Islam N, Santra AK, Ganguly R. Experimental investigation of thermophysical properties of Al2O3-water nanofluid: role of surfactants. J Mol Liq. 2017;237:304–12.

    Google Scholar 

  24. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.

    Article  CAS  Google Scholar 

  25. Nguyen CT, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.

    Article  CAS  Google Scholar 

  26. Lee JH, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51(11–12):2651–6.

    Article  CAS  Google Scholar 

  27. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002;91(7):4568–72.

    Article  CAS  Google Scholar 

  28. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):1–3.

    Article  CAS  Google Scholar 

  29. Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6(7):1529–34.

    Article  CAS  PubMed  Google Scholar 

  30. Das PK, Islam N, Santra AK, Ganguly R. Experimental investigation of thermophysical properties of Al2O3–water nanofluid: role of surfactants. J Mol Liq. 2017;237:304–12.

    Article  CAS  Google Scholar 

  31. Cacua K, Buitrago-Sierra R, Herrera B, Chejne F, Pabón E. Influence of different parameters and their coupled effects on the stability of alumina nanofluids by a fractional factorial design approach. Adv Powder Technol. 2017;28(10):37–44.

    Article  CAS  Google Scholar 

  32. Xia G, Jiang H, Liu R, Zhai Y. Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int J Therm Sci. 2014;84:118–24.

    Article  CAS  Google Scholar 

  33. Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir. 2008;24(21):12385–91.

    Article  CAS  PubMed  Google Scholar 

  34. Manjula S, Kumar SM, Raichur AM, Madhu GM, Suresh R, Raj MALA. A sedimentation study to optimize the dispersion of alumina nanoparticles in water. Cerâmica. 2005;51(318):121–7.

    Article  CAS  Google Scholar 

  35. Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.

    Article  CAS  Google Scholar 

  36. Mays LW. Water resource handbook. Upper Saddle River: McGraw-Hill; 1996.

    Google Scholar 

  37. Rozita Y, Brydson R, Scott AJ. An investigation of commercial gamma-Al2O3 nanoparticles. J Phys: Conf Ser. 2010;241(1):12096.

    Google Scholar 

  38. Lippens BC, de Boer JH. Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction. Acta Crystallogr. 1964;17(10):1312–21.

    Article  CAS  Google Scholar 

  39. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 2016;12(3):227–34.

    Article  Google Scholar 

  40. Kasprzyk-Hordern B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Adv Colloid Interface Sci. 2004;110(1–2):19–48.

    Article  CAS  PubMed  Google Scholar 

  41. Kosmulski M. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interface Sci. 2009;152(1–2):14–25.

    Article  CAS  PubMed  Google Scholar 

  42. Kulkarni P, Sureshkumar R, Biswas P. Multiscale simulation of irreversible deposition in presence of double layer interactions. J Colloid Interface Sci. 2003;260(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Du K, Zhang XS, Cheng B. Preparation and stability of Al2O3 nano-particle suspension of ammonia–water solution. Appl Therm Eng. 2011;31(17):3643–7.

    Article  CAS  Google Scholar 

  44. Fendler J. Colloid chemical approach to nanotechnology. Korean J Chem Eng. 2001;18(1):1–13.

    Article  CAS  Google Scholar 

  45. Somasundaran P, Krishnakumar S. Adsorption of surfactants and polymers at the solid–liquid interface. Colloids Surf A Physicochem Eng Asp. 1997;123–124(Suppl C):491–513.

    Article  Google Scholar 

  46. Morrison ID, Sydney R. Colloidal dispersions: suspensions, emulsions, and foams. New York: Wiley-Interscience; 2002.

    Google Scholar 

  47. Stumm W, Morgan JJ. Chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley-Interscience; 1996.

    Google Scholar 

  48. Gregory J. Interaction of unequal double-layers at constant charge. J Colloid Interface Sci. 1975;51(1):44–51.

    Article  Google Scholar 

  49. Gregory J. Approximate expressions for retarded van der waals interaction. J Colloid Interface Sci. 1981;83(1):138–45.

    Article  CAS  Google Scholar 

  50. Leong YK, Ong BC. Critical zeta potential and the Hamaker constant of oxides in water. Powder Technol. 2003;134(3):249–54.

    Article  CAS  Google Scholar 

  51. Rao Y. Nanofluids: stability, phase diagram, rheology and applications. Particuology. 2010;8(6):549–55.

    Article  CAS  Google Scholar 

  52. Sander S, Mosley LM, Hunter KA. Investigation of interparticle forces in natural waters: effects of adsorbed humic acids on iron oxide and alumina surface properties. Environ Sci Technol. 2004;38(18):4791–6.

    Article  CAS  PubMed  Google Scholar 

  53. Myers D. Electrostatic forces and the electrical double layer. In: Myers D, editor. Surfaces, interfaces, and colloids. Wiley; 2002, p. 79–96.

  54. Lyon LA. Handbook of applied surface and colloid chemistry. Volumes 1 and 2 Edited by Krister Holmberg (Chalmers University of Technology). John Wiley & Sons: West Sussex. 2002. xii + 1110 pp. $600.00. ISBN 0-471-49083-0. J Am Chem Soc. 2002;124(50):15143–4.

    Article  CAS  Google Scholar 

  55. Eastman J. Colloid stability. In: Cosgrove T, editor. Colloid science: principles, methods and applications. Blackwell Publishing Ltd.; 2009, p. 36–49.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Yoozbashizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareei, M., Yoozbashizadeh, H. & Madaah Hosseini, H.R. Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory. J Therm Anal Calorim 135, 1185–1196 (2019). https://doi.org/10.1007/s10973-018-7620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7620-1

Keywords

Navigation